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Abstract
We consider the interaction between two hyperspherical inclusions surrounded
by a medium experiencing an E-field in the perfect-conducting limit. By the
use of d-dimensional dipole moments we show that the dielectric function of
the medium can be calculated to any order n. In particular, κ(d)

n , the coefficient
of O(c2) in the series expansion for the dielectric function is determined in
terms of a dimensional dependence, which even though it is mathematically
complex, proves to be superior in convergence to other methods. We calculate
the potential difference between the two hyperspheres for various limits,
including the all important closely-packed limit. Using the theory of continued
fractions, we investigate the convergence of the interaction terms between
the two inclusions and obtain results that reduce the enormous number of
calculations that need to be computed as n → ∞. The latter may be useful in
the pursuit of a theory that resums the complicated interaction terms present in
the two-body + medium problem with a view towards an improved effective
medium theory.

PACS numbers: 03.50.De, 41.20.Cv

1. Introduction

One of the areas of physics that has been of great interest throughout the years has been
the study of non-homogeneous systems where particles or inclusions are embedded in a host
medium, e.g., such as in the case of a composite material. For such systems we are interested
in a variety of physical properties ranging from the electrostatic/magnetostatic behaviour,
heat conduction or diffusion to elasticity and porosity effects. While these properties seem
different at first glance, a close examination shows that there is a common mathematical
equivalence in all of them. While the symbols change, the underlying physics is the same so
that for instance in the case of a composite material we may wish to know something about
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the dielectric function, which is not so different1 from obtaining the Huggins coefficient of a
fluid that has particles dissolved in it. One suitable theory that can describe these different
systems has been the effective medium theory (EMT). While EMT is by no means the only
theory that one can make use of, it is nevertheless one of the most successful and versatile
theories around and not surprisingly, one that researchers use mostly for the solution of many
physical systems. The central concept of EMT is very simple: it deals with how a single
particle interacts with its surrounding medium whose effects are ‘averaged’ over the entire
medium that contains n such particles. The solution to this one-body problem is an old one
and dates back hundreds of years. For instance, in the study of the dielectric properties of a
medium we consider an electric field E0 which acts on a particular inclusion. The idea here
is to calculate the interaction of the inclusion with the medium and thus a good starting point
is to obtain the local field in the vicinity of the inclusion. However, the nagging question is
whether the description is microscopic, mesoscopic or macroscopic as dictated by the size
of the inclusion. In 1870 Lorentz [1] investigated this issue while he was developing his
ideas of macroscopic electrodynamics. Lorentz was able to compute the local field Elocal

acting on a particle in a medium by considering a cubic crystal made up of identical particles.
Lorentz’s field was not a microscopic field nor the average field of the medium and for this
and other reasons his theory received its fair share of criticism [2, 3]. What was needed in
order to improve the theory was a proper connection between microscopic and macroscopic
parameters. One way we can attempt to do this is to relate the dipole moment of an inclusion
to the local electric field. To state this more clearly what is needed is a way to associate a
macroscopic parameter such as the dielectric constant ε with a microscopic property, such as
the particle polarizability α. The latter has been achieved in the theory that has come to be
known as the Clausius–Mossotti relation [4, 5] which works well for various dielectric liquids
and gases. The problem with the Clausius–Mossotti formula was the difficulty in obtaining the
microscopic parameter α (polarizability) and efforts were made to obtain it using semi-classical
methods such as spring models for atomic systems for example. However, the fact that α is
a microscopic parameter warrants the idea that the most appropriate approach is to calculate
α using a full quantum mechanical analysis [6–8]. The polarizability has been a persistent
issue that has lingered around even when extensions to the Clausius–Mossotti formulation
have been attempted. One such extension that deals with the case of composite materials
has been the Maxwell–Garnett theory. Once again the key ingredient here is to determine
the polarizability and this is done by using a classical approach whereby the inclusion has
spherical geometry with dielectric constant ε1 and radius a. The geometry of the inclusion
is best approximated as a sphere because it is far easier to obtain analytic solutions this way,
however there have been cases where the inclusions have been assumed to have non-spherical
geometries such as ellipsoids for example, but such an approach involves elliptic integrals
[9, 10]. The Maxwell–Garnett theory has been advanced by the work of Bruggeman [11]
who has made improvements by analysing the symmetrical properties of a composite system.
Bruggeman’s assumption considers a composite host of dielectric constant ε and a spherical
inclusion of radius a embedded in it whose dielectric constant is ε1. The field that the inclusion
experiences far away is taken to be constant but as we get closer to the inclusion the field
varies—see [12, 8] for more details. While EMT has been applied to many non-homogeneous
systems with some success it has failed to produce exact results in many other cases. The major
shortcoming is due to a very simple reason as was previously stated, i.e., EMT is a one-body
theory that deals with how a particle interacts with the surrounding medium. What is needed

1 This does not imply anything about the difficulty in obtaining solutions to either of these similar systems. In
general, the solution to the fluid-dynamics case is more involved than the electrostatic case but the same principles
hold.
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is an improvement by extending conventional EMT interactions to incorporate many-body
interactions but even the two body corrections seem to be formidable in nature as we shall
see later on. To gain an insight as to why we must go beyond conventional EMT consider the
results for the dielectric function of a composite system in the superconducting limit ε → ∞.
If we obtain the dielectric function via a virial expansion in the volume fraction of inclusions
c, we find for spherical inclusions, that the Maxwell–Garnett theory gives the second-order
coefficient κ of O(c2) as 3, while the Bruggeman theory gives the value κ = 9. The true
value happens to be 4.51 but more on this later. Both the Maxwell–Garnett and Bruggeman
theories are correct to first order but fail when we consider second order effects. These second
order interactions are necessary if current EMT is to give much improved results for most
systems under investigation. In this paper we will deal with these second-order interactions
via a generalized d-dimensional method of images approach that gives all known solutions as
special limiting cases. It will allow us to extend conventional EMT to incorporate two-body
effects which are required if both theory and experiment are to agree more. Moreover, while
many-body effects are extremely difficult to analyse, we will resum the complex interaction
terms that give rise to such effects so that we are not just improving conventional one-body
EMT, but are laying the foundations for the next interesting step: the study of a three-body
EMT. All this will be done in the context of obtaining the dielectric function of a composite
system as well as the potential difference of that system containing hyperspherical inclusions.
The paper is organized in the following manner: in section 2 we discuss in more detail
what our objectives are and we introduce the theory behind the method of images. In
section 3 we extend the method of images to a d-dimensional form. Section 4 generalizes
the d-dimensional dipoles and charges to any order n which is necessary in order to maintain
the correct convergence and we obtain the d-dimensional dielectric function to second order
in the volume fraction of inclusions. In section 5 we obtain the potential difference between
two hyperspheres and resum the complicated terms for the case when the hyperspheres are
in contact (closely packed limit) via the use of continued fractions. We do the same in
section 6 but for varying separations and give asymptotic solutions derived from the
resummation of the infinite series. In section 7 we discuss and interpret some of the results
and conclude the paper in section 8.

2. The method of images

We are reminded that although studies have been made in order to determine thermal
conduction, magnetic permeability and other effects for example, of particular interest has
been the determination of the dielectric function to O(c2), where c is the volume fraction of
inclusions in a medium. From this point on we will consider this type of system in our analysis.
In 1873 Maxwell [13] obtained the exact O(c) coefficient for the d = 3 case and since that
time others have made similar contributions to the problem by using various techniques for
both the d = 2, 3 cases [14, 15]. Indeed the coefficient of O(c) is a relatively simple problem
to deal with because as we mentioned earlier we are concerned with one inclusion interacting
with the host medium and this is just conventional EMT. Matters are complicated when we
consider the O(c2) coefficient because this involves two-inclusion interactions and it is of
no surprise that it took about 100 years after Maxwell before a serious attempt was made at
solving this problem, notably by the work of Jeffrey [16] who used a multipole expansion
method in d = 3 to solve for κ:

ε = ε0(1 + [ε]c + κc2 + O(cn)). (1)
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Figure 1. For a charge Q placed near an earthed sphere we can derive the first image position from
the centre b1 = xK of the image charge QK . By generalizing this procedure we can obtain the
position of an nth order charge by the use of (19). Note that there is an absence of a dipole in this
figure because the dipole moment is induced by the external electric field E0.

The coefficient [ε] in (1) is the solution due to Maxwell which we can write in d-dimensions
as

[ε] = dγ ≡
(

ε1 − ε0

ε1 + (d − 1)ε0

)
, (2)

where γ is proportional to the polarizability of the inclusion due to the E-field and ε1, ε0 are
the dielectric constants of the inclusion and the host medium respectively. For the case of
perfect-conducting inclusions, (2) reduces to the simple form [ε] = d. Our approach here
will be through the use of the theory of images albeit in a more sophisticated form than usual
and via an extension to d dimensions. The theory of images has been studied extensively
by many over the years from as far back as when it was founded by Lord Kelvin [17]. The
method has proven to be very useful in many areas of physics, from classical electrostatics,
electromagnetic theory and even in the solution of quantum mechanical effects which involve
forces between atoms and molecules near surfaces, the scanning tunnelling microscope (STM)
being one example of the latter [18–20]. The theory of images that we are interested in using
here considers the potential due to a charge Q outside a perfect conducting sphere (three-
dimensional) as being equal to two other point charges. One point charge exists at the image
point xK = a2

R
with charge QK = −aQ

R
, while the other point charge which is equal to −QK ,

for an uncharged sphere, is located at the origin O. The radius of the sphere being a and the
distance of the charge from the centre defined as R. Specifically if the sphere is grounded, see
figure 1, we can ignore the charge −QK at the origin. At any point P1 along the surface of
the sphere the potential is given as

V = 1

4πε0

(
Q

r1
+

QK

r2

)
. (3)

By considering the equipotential surface of V = 0 through P1 we can write (3) as

r2

r1
= −QK

Q
= λ. (4)

Comparing points P2 and P3 we have

λ =
(

r2

r1

)∣∣∣∣
P2

= a − xK

R − a
(5)

and

λ =
(

r2

r1

)∣∣∣∣
P3

= a + xK

R + a
, (6)
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Figure 2. From the definition of a dipole, two charges are placed at infinitesimal distances apart
given as x corresponding to dipole p1 on the left and x′ for the image dipole p2 inside the sphere
which exists at a distance b1 = Rx′/x. O is the centre of the sphere.

respectively. By equating (5) and (6) and then multiplying them we obtain the first displacement
of QK from the origin

(a − xK) (R + a) = (a + xK) (R − a) ⇒ xK = a2

R
≡ b1 = aω1. (7)

Furthermore, from

λ = a

R
= −QK

Q
⇒ QK = a

R
Q ≡ b1

a
Q = ω1Q. (8)

It is worth noting in (7) and (8), that b1 is the position of the first image and that any
subsequent image position is given by bj in equation (19) later on. Similarly we write the
continued fraction wj = bj/a which is obtained by (18). The problem is complicated slightly
when we introduce an electric field E0 which acts in the parallel and perpendicular direction
in the two-sphere system respectively. The electric field in the perpendicular direction creates
dipoles and so we must map dipoles to dipoles between the spheres. On the other hand, the
parallel electric field induces point dipoles and point charges (a residual image point charge),
so that the mappings consist of point dipoles and charges being mapped to point dipoles and
charges between the spheres. By definition, a dipole consists of a positive and negative charge
which are an infinitesimal distance x apart and with the direction of the dipole being from the
negative to the positive charge, so that p = Qx where p is the dipole and Q is the charge.
We will examine the point dipole for the perpendicular field case, see figure 2. A dipole p1

created from an electric field at a distance R outside a sphere induces an image dipole inside
that sphere at a separation b1 from the origin. The dipole p1 = Qx while the image dipole is
p2 = Q′x ′ and from figure 2 we have the ratio

b1

R
= x ′

x
. (9)

We can now find p2 in terms of p1 and noting that Q′ = −Qa/R we have

p2 = −Q
( a

R

) b1

R
x, (10)

by eliminating x ′. From the definition of p1 however (10) simplifies to

p2 = −p1

( a

R

)3
. (11)

Equation (11) was obtained for the perpendicular field case while the parallel case is exactly
the same except that the sign changes, see (14) in the next section for the d-dimensional
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extension and compare to (11). From (14) we can see that the charges have been written in
terms of the dipole p1. From figure 2

Q′ = −Q
( a

R

) ( x

R

)
= −Q

a

( a

R

)2
x, (12)

so that finally we have

Q′ = −p1

a

( a

R

)2
. (13)

These results for d = 3, i.e., for spheres, form the basis of our analysis in general d dimensions
in the next section. Others over time have extended these ideas to many problems. Neumann
[21] for example, solved the problem of a three-dimensional dielectric sphere. In more recent
times these results have been generalized [22, 23] in d-dimensional space, i.e., the spheres
become hypersurfaces in arbitrary dimensions. In the sections to follow we derive expressions
for the d-dimensional dipoles and charges and obtain a general result for the κ coefficient in
(1) to any order n. Various limits are studied and compared to the results of others. One of the
issues that needs to be dealt with when calculating κ is the enormous number of complex terms
that arise which can be more than several hundred thousand for a typically simple calculation
of small order n. An attempt has been made to resum these complex terms so that not so
many terms are needed, especially since computationally we run into problems of memory
and time. Such a resummation has been investigated using the convergence properties of
continued fractions and is presented in the context of deriving the d-dimensional potential
difference between the two hyperspheres. We present the results for the behaviour of the
voltage at various limits including the closely packed limit. We start by expanding the ideas
discussed so far on the theory of images in order to incorporate d-dimensional dipoles and
charges and generalize them to arbitrary order n. This allows us to solve for the dielectric
function of a composite system in d dimensions.

3. The d-dimensional dipoles and charges

We begin by investigating the contributions of the dipoles and the charges between the two
hyperspheres—see [23] for more information on the derivation of the d-dimensional dipoles
and charges. The effect of the parallel component of the electric field will be considered
for brevity reasons although the perpendicular case is slightly more involved but otherwise
straightforward. Figure 3 defines the first few generations of dipoles and charges that will
form the basis of the mappings between the two d-dimensional inclusions. Djordjević et al
[24] have shown that these mappings consist of continued fractions but their solutions are for
two-dimensional point dipoles only, a result that is exact for d = 2. In what follows we will
not only generalize to the case of arbitrary dimensions, but we will include the contributions
of the charges which vanish in the limit d = 2, naturally recovering the results of Djordjević
et al. By examining figure 3, we see that the electric field in the parallel direction induces a
dipole p1 on the left hypersphere at the origin O. On the second hypersphere a dipole p2 and
charge Q2 are generated at a distance away from the origin given by the variable bj−1. Charge
conservation requires that another charge −Q2 of equal and opposite magnitude be created
at the origin. On the third generation, the point dipole p3 and the corresponding charges are
created on the first hypersphere. These mappings of the point dipoles and charges between
the hyperspheres continues infinitely from one to the other. The symmetry of the system,
i.e., the hyperspheres have equal radii, means that the procedure is repeated twice to account
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Figure 3. The dipole and charge distributions are shown here for the parallel component of the
electric field. The sequence of point dipole and charge images for each generation is shown up
to p‖

4, with the perpendicular distribution being analogous to the parallel case, the only major

difference being the absence of the charges in the former. The superscript j in Q
j
n refers to the

image point bj−1 (see (19)) which gives the position of the charges/dipoles as represented by the
dots while n refers to the generation (or order) pn.

for the interaction of the second inclusion onto the first. On the basis of the above method and
the results we have derived in the previous section for d = 3 we can write down the second
generation point dipole p2 and the corresponding charges as

p2 = p1

( a

R

)d

Q
(2)
2 = −(d − 2)

(p1

a

) ( a

R

)d−1

(14)
Q

(1)
2 = (d − 2)

(p1

a

) ( a

R

)d−1
,

where (14) are the initial conditions of the system and thus the total dipole moment ptot
2

becomes

ptot
2 = p2 − b1Q

(2)
2 = p1(d − 1)

( a

R

)d

. (15)

On the third generation, we can use (14) in the derivation of p3 and the charges to obtain

p3 = p1

( a

R

)d
(

a

R − b1

)d

Q
(3)
3 = (d − 2)

(p1

a

) ( a

R

)d−2
(

a

R − b1

)d−1

(16)
Q

(2)
3 = −(d − 2)

(p1

a

) ( a

R

)d−2 ( a

R

)d−1

Q
(1)
3 = (d − 2)

(p1

a

) ( a

R

)d−2
[(

a

R − b1

)d−1

−
( a

R

)d−2
]

,
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with the total dipole moment ptot
3 = p3 + Q

(3)
3 b2 + Q

(2)
3 b1 given as

ptot
3 = p1

( a

R

)d

(d − 1)

(
a

R − b1

)d

+ p1

( a

R

)d

(d − 2)

[(
a

R − b1

)d−1 (
R

a

)
−
( a

R

)d−2
]
.

(17)

Equation (17) is indicative of the fact that calculation of higher-order terms is very complicated
since the number of terms that are needed becomes enormous. As previously mentioned, even
for small orders in n, at least several hundred thousand terms are required in order to determine
say, κ in (1). The form of these expressions is so formidable that as n → ∞ it is very hard to
keep track of the mappings between the hyperspheres. Fortunately in the next section we will
derive these expressions as analytic/closed-form equations.

4. Higher-order dipole moments

From (17) we see that all terms involve the ratio ω = a/R and the position of the images bj .
From these results it is easy to obtain the recurrence relation for ωj as follows [23, 24],

ωj = a

(R − bj−1)
, (18)

while in the case of bj the recurrence relation becomes

bj = a2

(R − bj−1)
, (19)

where we note that bj = awj . The dimensional dependence of the dipole terms takes the
following form for n � 2:

pn = pn−1

(
a

R − bn−2

)d

. (20)

As we shall see later, the behaviour of ωj and bj−1 in the equations above needs to be
investigated further as far as their convergence properties are concerned since we want to
attempt a resummation of a large number of terms that involve these continued fractions. For
now we want to obtain the dielectric function for hyperspherical inclusions in the perfect-
conducting limit using the virial expansion to O(c2) in the low volume fraction of inclusions
limit:

ε

ε0
= 1 + dc +

(
d +

d

p1ad

∫ ∞

2a

dR Rd−1p̄(d)
n

)
c2 + O(cn). (21)

As can be seen from (21), κ has a dimensional dependence and can be calculated to any
order n, that is,

κ(d)
n = d +

d

p1ad

∫ ∞

2a

dR Rd−1
[
p̄(d)

n

]
, (22)

where p̄(d)
n is defined below. Before doing so it is worth pointing out that by a similar routine

we can calculate the expression for the perpendicular field case so that overall the total averaged
dipole moment to any order is given by

p̄n = p‖tot
n + (d − 1)p⊥tot

n , (23)

for both the parallel and perpendicular contributions of the field or more specifically

p̄(d)
n = p1[1 + (d − 1)(−1)n−1]

n−1∏
i=1

ωd
i + (−1)n−1(d − 2)

n∑
j=2

Q(j)
n bj−1. (24)
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Figure 4. The conductance σ = ε/ε0 has been plotted for d = 1, 2, 3, 4 in the low volume fraction
of inclusions c, for two interacting inclusions in a host medium.

The non-trivial contributions of the line charges for each successive generation in (24) are
given as

Q(n)
n = (−1)n−1

(p1

a

)
ωd−1

n−1

n−2∏
i=1

ωd−2
i , (25)

for j = n while for the other charge contributions we have

Q(j)
n = −Q

(j−1)

n−1 ωd−2
j−1, (26)

for n > j < 1. The line-charges that ‘couple’ with the dipoles are determined by

Q(1)
n = −

n∑
j=2

Q(j)
n , (27)

where n > 2. We can now write down the dimensionally dependent coefficient κ in the series
for the dielectric function ε/ε0 = (1 + dc + κ(d)

n c2 + · · · ), as

κ(d)
n = d +

d

p1ad

∫ ∞

2a

Rd−1

{
p1[1 + (d − 1)(−1)n−1]

n−1∏
i=1

ωd
i

+ (−1)n−1(d − 2)

n∑
j=2

Q(j)
n bj−1

}
dR. (28)

Recalling that ω = a/R, it is easy to substitute ω in (28) so that the integral is performed over ω

in the interval [0, 1/2] (see results of table 1). Equation (28) is the generalized d-dimensional
coefficient κ that can be used to solve for any order n. This in turn allows us to calculate the
d-dimensional conductance, see figure 4. In the next section we shall use these results to study
the problem of the potential difference between two hyperspheres.

5. The potential difference between two hyperspheres

The problem of finding the potential difference (or voltage) and therefore capacitance between
two inclusions has been of great interest. In the case where the inclusions are spheres,
considerable work has been undertaken to calculate special cases of the electrostatics of such
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Table 1. Values for κ
(d)
n using higher-order dipole images in d dimensions. Values up to n = 23

are shown for d = 2, 3 and 4. Note that for the case d = 1, κ
(1)
n = 1 to all orders in n. One can see

from the results below that the convergence towards the known values is relatively fast given the
complexity of the terms that are calculated for each order. Known values: d = 2, κ = 2.744 989 . . .

[24], d = 3, κ = 4.51 . . . [16].

κ
(d)
n d = 2 d = 3 d = 4

κ
(d)
3 2.666 666 4.166 666 5.370 370

κ
(d)
4 2.666 666 4.291 666 5.550 925

κ
(d)

5 2.722 340 4.394 103 5.652 564

κ
(d)
6 2.722 340 4.427 576 5.691 469

κ
(d)
7 2.735 509 4.455 031 5.716 301

κ
(d)
8 2.735 509 4.468 273 5.729 623

κ
(d)
9 2.740 152 4.479 289 5.738 861

κ
(d)
10 2.740 152 4.485 755 5.744 690

κ
(d)
11 2.742 195 4.491 220 5.748 973

κ
(d)
12 2.742 195 4.494 825 5.751 943

κ
(d)
13 2.743 231 4.497 916 5.754 221

κ
(d)
14 2.743 231 4.500 118 5.755 901

κ
(d)

15 2.743 812 4.502 030 5.757 231

κ
(d)
16 2.743 812 4.503 469 5.758 257

κ
(d)
17 2.744 163 4.504 731 5.759 089

κ
(d)
18 2.744 163 4.505 717 5.759 751

κ
(d)
19 2.744 387 4.506 592 5.760 299

κ
(d)
20 2.744 387 4.507 297 5.760 747

κ
(d)
21 2.744 536 4.507 927 5.761 124

κ
(d)
22 2.744 536 4.508 447 5.761 438

κ
(d)
23 2.744 640 4.508 915 5.761 706

spherical pairs. Calculations have been made of the capacity of touching unequal metallic
spheres [25], while extensions to this method have been used to study non-touching spheres
under a variety of conditions [26]. In addition to calculations of the capacity, the total charge
between two spheres and the electrostatic force, consideration has been made of dielectric
sphere pairs in uniform external fields using a Green’s-function technique for difference
equations [27]. Various limits have been investigated and the asymptotic behaviour of both
separated conducting spheres and touching dielectric spheres have been proposed [28]. Most
of the work mentioned above was done using field expansions in curvilinear coordinates, such
as bispherical coordinates [29]. An interesting extension of the work done so far would be to
actually solve for the dielectric function using d-dimensional bispherical coordinates. In the
case of a composite system, we are interested in such things as the dielectric and conductive
properties. These coefficients of interest can be obtained from knowledge of the induced
moments on the inclusions. Most methods lead to an infinite matrix equation, which must be
truncated and inverted numerically to obtain the multipole moments. When the inclusions are
close to touching, the number of multipole moments that need to be retained for an accurate
solution makes numerical inversion impractical. A method for calculating the influence exerted
between nearest-neighbour inclusions explicitly, that is without numerical inversion, and thus
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providing an estimate of the induced multipoles of all orders, would simplify the calculation
of effective properties of closely-packed composites. The method of images that has been
presented in this paper might be able to help us in this context, by allowing us to gain valuable
insight into the problem. Thus we will use the results that we have obtained in the previous
sections to calculate the d-dimensional voltage 
V , between two inclusions. We will derive
an expression for the d-dimensional voltage using the method of images by firstly considering
the contributions due to the point dipoles only, an exact result for d = 2 and in agreement
with Djordjević et al [24], and then the full contributions that include the charges too. The
special limit when the hyperspheres touch, ω = a/R = 1/2, will be investigated due to the
importance of nearest neighbour effects in closely-packed composites. As we shall see, for
the case d = 3 when the limit of ω → 1/2 (spheres touching), the convergence is so slow that
in order to converge to the expected V → 0 limit an enormous (approaching infinity) number
of both dipole and charge contributions need to be calculated. Fortunately, as we shall see
later, we can derive expressions that reduce the large number of terms that are needed in order
to calculate the potential difference between the hyperspheres. Before that however, we will
investigate the full contributions due to the point dipoles and charges in the next section.

5.1. Dipole contributions

We consider two inclusions in the presence of a parallel and perpendicular component of an
electric field E0. We can write the voltage 
V between the hyperspheres as


V = E0R + 2
∞∑

n=2

V D
n , (29)

where the factor 2 in (29) represents the effect of the other hypersphere (by symmetry) and
V D

n is the contribution from all the dipoles only. Here R is the separation of the centres of the
two hyperspheres each of radius a. We recall from previous sections that the positions of the
dipoles (charges) are given by bn, such that

bn = aω

1 − ωωn−1
, (30)

and each dipole pn is generated from the previous mapping as can be seen from the following
expression:

pn = pn−1
ωd

(1 − ωωn−2)d
. (31)

Once again we can see that (30) can be written as bn = aωn because all the ω are generated
by the continued fraction

ωn = ω

1 − ωωn−1
. (32)

We can now write down the point-dipole-only contribution to the voltage (29) as

V D
n = − 1

�d

bd−1
n−1

a2(d−1)
pn−1, (33)

where a is the radius of each hypersphere and we use (30) and (31) to solve for 
V :


V = E0R + 2
∞∑

n=2

[
− 1

�d

bd−1
n−1

a2(d−1)
pn−1

]
. (34)
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Figure 5. The voltage between two inclusions is shown for d = 2. Three results are actually
shown (i) the result as obtained in this paper, (40), (ii) the approximation (73) and (iii) the case of
Djordjević et al [24]. All the curves are exact and so lie on top of each other.

Before proceeding any further, we will examine (33) for the case d = 2 and study the all
important leading terms. We will consider the leading terms given by n = 2, 3, 4 and note
that p1 = �dE0a

d and �d = 2d−1π . For n = 2, since n = 1 means that V1 = 0, we have

V D
2 = − 1

�2

b1

a2
p1 b1 = a2

R
�2 = 2π,

so that

V D
2 = − 1

2π

p1

R
. (35)

In a similar way we consider the n = 3 case and keep in mind that ω0 = 0 and ω1 = ω = a/R:

V D
3 = − 1

2π

b2

a2
p2 b2 = aω

1 − ω2
p2 = p1ω

2, V D
3 = − 1

2πa

ω

(1 − ω2)
p2.

By not writing out p2 explicitly and after simplifying we finally have

V D
3 = − 1

2π

p2

(R − a2/R)
. (36)

The fourth-order term n = 4 can be expanded in the same way as before so that the following
expressions are obtained:

V D
4 = − 1

2π

b3

a2
p3 b3 = a2

R − a2

R− a2
R

p3 = p2
ω2

(1 − ω2)2

ω1 = a

R
ω2 = ω

1 − ω2
ω3 = ω

1 − ω2

1−ω2

,

so that after all the ω have been replaced we arrive at the final result

V D
4 = − 1

2π

p3(
R − a2

R− a2
R

) . (37)

The terms given by (35), (36) and (37) are exactly the same as equation (30) of the paper by
Djordjević et al [24]. In fact this is more apparent when we plot 
V as a function of ω̄ = R/a,
showing the exact correlation to the result obtained by Djordjević et al [24], who determined
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Table 2. Values obtained for 
V showing very slow convergence for d = 3. The first four rows
show convergence due to dipole-only interactions in (40), while the last two rows include the image
contributions also.

n 
V

10 1.299 54
20 1.292 33

150 1.289 91
200 1.289 89

10 1.246 03
20 1.244 08

their version using hyperbolic series. The reason why (34) is exact in two dimensions is
because the only contributions that exist are those that come from the point dipoles. For the
case d = 2 all charge contributions vanish. However for other dimensions, the charges do not
cancel so that we need to consider these in the next section.

5.2. Dipole and charge contributions

In two dimensions we expect the charges to disappear and the only contribution to the voltage
comes from the point dipoles only. The expression for the latter can be used for the case d = 3,
but the convergence is very slow especially when we consider the limit where the spheres are
touching (ω = 1/2). By the methods used previously and using the results for the charges,
(25), (26) and (27), we write down the expression for the charge contributions, V C

n :

V C
n = − 1

�d

n∑
k=1

Q(k)
n

ρd−2
k−1

, (38)

where all symbols, b, a, p and so on, have the usual meaning as encountered before. We
define the parameter ρ such that

ρd−2
k−1 ≡ [R − bk−1]d−2 . (39)

As can be seen from (39), when d = 2, ρ = 1 and the charges in (38) cancel each other out.
Thus the total voltage 
V , which includes both point dipoles and charges can be written as


V

E0a
=
(

R

a

)
+

(
2

E0a�d

) ∞∑
n=2

[
n∑

k=1

Q(k)
n

ρd−2
k−1

− bd−1
n−1

a2(d−1)
pn−1

]
. (40)

In two dimensions, because the charge contributions vanish, the results are exact and the
potential difference between the inclusions varies as shown in figure 5. For three dimensions
where the inclusions are spheres, (40) gives us an improvement in convergence in the limit
when the two spheres approach each other (ω → 1/2), as compared to when we consider
the point dipole contributions only. The better convergence is due to the participation of
the charges but unfortunately (40) converges so slowly overall as ω → 1/2 that in order to
improve upon this convergence an enormous number of terms needs to be considered which
makes the whole procedure computationally difficult, see table 2. Even so the method gives
us a very powerful insight that could be used in conjunction with analytical methods to resum
the terms appearing in say, the continued fractions, thus giving us the desired convergence
without having to compute a vast amount of terms. While such a resummation needs to be
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studied carefully and in a lot more detail, something that is beyond the scope of this paper,
we will nevertheless illustrate the principle by considering the limit when the hyperspheres
are touching, ω = 1/2 or 
V = 0.2 To study the limit when the two hyperspheres touch, i.e.,
when ω = 1/2 (or ω̄ = 2), we will consider the continued fraction wn (see the appendix). We
notice that for any large ω such that n → ∞, the continued fraction has the form

ω∞ = ω

1 − ω2

1 − ω2

1 − ω2

. . . (41)

where for reasons we have talked about before, we are able to write such a continued fraction
in ω alone. By evaluating such continued fractions at ω = 1/2 we notice that we obtain the
following pattern:

{ω1, ω2, ω3, ω4, . . .} = { 1
2 , 2

3 , 3
4 , 4

5 , . . .
}
. (42)

Now for any number x, we can expand it in a continued-fraction form such that

x = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

which can be represented in the following notation:

x = {a0, a1, a2, a3, . . .}.
From (42) we can surmise that for any wn as n → ∞, we obtain the formula

ωn = {0, 1, n} = 1

1 + 1
n

, (43)

so that by substituting values for n we derive

ω1 = {0, 1, 1} = 1

1 + 1
1

= 1

2
,

ω2 = {0, 1, 2} = 1

1 + 1
2

= 2

3
,

ω3 = {0, 1, 3} = 1

1 + 1
3

= 3

4
,

ω4 = {0, 1, 4} = 1

1 + 1
4

= 4

5
,

...

(44)

and so forth. Thus to all orders in n, we can generate the ω in the simple form

ωn = n

n + 1
. (45)

As the number of terms that need to be calculated increases considerably as the hyperspheres
touch, (45) reduces the otherwise complex terms to a form that is computationally more

2 If we were to plot (40) as a function of ω−1 = ω̄ = R/a, we find that when ω̄ = 2,
V = 0.
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efficient. At the same time (45) gives us an idea as to how the voltage 
V behaves at that
limit. By taking the voltage due to the point dipoles only for brevity3, we can express it as

V D
n+2 = − 1

�d

bd−1
n+1

a2(d−1)
pn+1, (46)

where we note that n � 0 and p1 = p0 = �dE0a
d . The dipoles are now obtained from

pn+1 = pn

[
n

n + 1

]d

, (47)

while the positions of the dipoles are given by

bn+1 = a(n + 1)

n + 2
, (48)

and by substituting (47) and (48) into (46) we obtain

V D
n+2 = − 1

�d

[
n + 1

a(n + 2)

]d−1 [
n

n + 1

]d

pn+1. (49)

When we take the limit n → ∞ we see that (49) simplifies to

lim
n→∞ V D

n+2 ≡ V D
∞ = − 1

�d

[
1

a

]d−1

p∞+1 (50)

where we notice from (47) that p∞+1 = p∞ as n → ∞. This means that p∞ . . . p100 =
p99, p99 = p98, p98 = p97 . . . p1. Equation (50) now becomes

V D
∞ = − 1

�d

[
1

a

]d−1

p1. (51)

Substituting p1 = �dE0a
d we finally obtain


V

V0
= 2 +

2

V0

(
− 1

�d

[
1

a

]d−1

�da
dE0

)
= 0, (52)

where V0 = E0a. Remarkably we see that for inclusions of any dimension d, the voltage 
V

becomes zero at ω = 1/2, as expected.

6. The convergence of the potential difference for varying separations

In the previous section we have considered the special limit when the hyperspheres are
touching, i.e., ω = a/R = 1/2 (or ω̄ = R/a = 2). Equation (45) has reduced the enormous
number of terms that would usually be required for the closely-packed limit. Unfortunately,
for other hyperspherical separations such as ω ∈ [ 1

3 , 1
4 , 1

5 , 1
6 , . . .

]
, a similar form to (45) is

not possible because the convergence of the ω varies dramatically for different separations.
However, a close study of the convergence of the ωn for these different separations shows that
only the first few orders vary significantly, while higher orders of ω converge to a constant
value which we shall call β. We define an order γ which is chosen as the maximum number of
terms that need to be calculated in ωn before the convergence becomes constant. Typically, γ

is chosen after calculating the order up to n = 6 or n = 7 in ωn and so γ = 6 or 7 respectively.
If we choose γ < 6 say, we encounter convergence problems and we must evaluate all orders
by the brute force calculation/analysis of the continued fractions. In fact the values of β(ω)

3 The same can be done with the voltage due to the charges, V C
n , but it is more involved.



11926 A Alexopoulos

Table 3. Saturated convergence values of β(ω|n > γ ) for various selected hyperspherical
separations.

ω = a/R β

1
3

76 910
201 353

1
4

7865 521
29 354 524

1
5

6665 999
31 938 720

1
6

7997 214
46 611 179

1
7

4976 784
34 111 385

1
8

1905 632
15 003 009

1
9

4435 929
39 424 240

1
10

950 599
9409 960

are determined from the study of the limits of the continued fractions of ωn, for n � γ , for all
separations. For example we obtain for ω = 1/3 and ω = 1/4 respectively:

β

(
1

3

)
=
{

0, 2,
{15}
1 , 2, 14, 2

}
= 76 910

201 353
, (53)

and

β

(
1

4

)
=
{

0, 3,
{12}
1, 2, 1

}
= 7865 521

29 354 524
, (54)

and so on. The notation
{15}
1 means that the number 1 is repeated thereafter another

14 times and likewise the pair term
{12}
1, 2 is repeated 11 times. Table 3 shows values of β

for typical separations ω = a/R. We now return to the expression for the voltage between two
hyperspheres in the dipole only contribution limit for brevity, and rewrite it in the following
form:


V

V0
= R

a
−
(

2

V0�dad−1

)[
2d−1πE0a

dωd−1
1 +

∞∑
n=2

ωd−1
n pn

]
. (55)

After the first few orders, i.e., when n � γ , the ω converge to the values given by β(ω)—see
table 3 for some representative values. The second term in equation (55) can be written as

∞∑
n=2

ωd−1
n pn =

γ∑
n=2

ωd−1
n pn +

∞∑
n=γ +1

ωd−1
n pn. (56)

The third term in (56) can be truncated to N, as N → ∞, such that the required convergence
is established, thus we have

N∑
n=γ +1

ωd−1
n pn = ωd−1

γ +1 pγ +1 + ωd−1
γ +2 pγ +2 + · · · + ωd−1

N pN. (57)

Since n = γ + 1 implies that we are considering the ω whose values converge to β(ω), (57)
can be expressed as

N∑
n=γ +1

ωd−1
n pn = βd−1(ω)[pγ +1 + pγ +2 + · · · + pN ], (58)
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where pγ +1, pγ +2, . . . are obtained from

pn = 2d−1πE0a
d

n−1∏
k=1

ωd
k . (59)

Using (59), we can further write (57) in the form

N∑
n=γ +1

ωd−1
n pn = 2d−1πE0a

dβd−1(ω)

γ∏
k=1

ωd
k


1 + ωd

γ +1 +
γ +2∏

k=γ +1

ωd
k + · · · +

N−1∏
k=γ +1

ωd
k


 , (60)

so that we finally obtain

N∑
n=γ +1

ωd−1
n pn = 2d−1πE0a

dβd−1(ω)

γ∏
k=1

ωd
k


1 +

N−γ−1∑
j=1

βjd(ω)


 . (61)

Equation (61) reduces the number of calculations that are needed to calculate the potential
difference because only the first few orders are computed, up to γ , while all other terms
are factored in as constants in the form of all the β. Substituting (61) into (55) we obtain
the final form for the potential difference 
V as given by (65). Equation (65) allows us to
work out the potential difference between two hyperspheres at separations ω = a/R (or ω̄ =
R/a) : ω ∈ [ 1

2 , 1
3 , 1

4 , 1
5 , . . .

]
for instance without the need to resort to an enormous number of

terms (approaching infinity), in order to obtain the required convergence for the d-dimensional
voltage. From (61), the sum is truncated to N but ideally we expect that N → ∞. However,
as N → ∞ in (61), β(ω) → 0 since only the first few terms contribute to the sum

N−γ−1∑
j=1

βjd(ω) = βd(ω) + β2d(ω) + · · · + β(N−γ−1)d (ω). (62)

Suppose we consider β(ω) � ωγ +1 with γ = 7 say, to be β(1/3) = 0.381 966 then from (62)
we have (let d = 2 for simplicity)

N−8∑
j=1

β2j (ω) = (0.381 966)2 + (0.381 966)4 + · · · + (0.381 966)(2N−16). (63)

We find that each successive power makes β smaller and smaller so that only the leading terms
can be retained. To a very good approximation we can write the sum as

N−γ−1∑
j=1

→
γ∑

j=1

. (64)

Thus from (65) we see that only the leading terms can be used up to γ , without the need to
calculate an infinite number of terms which means that (65) can be considered as a resummation
of the infinite series. The results of (65) are very accurate as can be seen by figures 7 and 8 for
inclusions of d = 2 and 3 respectively. From figure 7 for the d = 2 case, there are three curves
given by (40), (73) and (65). All three methods are exact in all limits. Similarly for d = 3,
figure 8 shows equations (65) and (74) plotted and compared. The approximation (74) seems to
be quite accurate. Comparison of figure 8 and figure 6 also shows that the convergence of (65)
for the dipole only contributions is faster than that obtained by the use of the full contributions
as given by (40), even when the interactions due to the charges have been included in the
latter4.
4 Equation (65) has been written in terms of ω̄, p̄, β̄ etc by applying the simple transformation ω → 1/ω = ω̄.
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Figure 6. The voltage between two inclusions is shown for the case d = 3. The three curves
that are shown are (i) the result obtained from (40) without the charge contributions (curve 1),
(ii) the results from (40) with the charge contributions (curve 2) and (iii) the approximation (74)
(curve 3). The inset shows the interval ω̄ ∈ [2, 2.5] so that the convergence can be better
differentiated between each case.

Figure 7. The potential difference is plotted between the two inclusions for d = 2.
Equations (40), (73) and (65) have the same convergence and thus all the solutions are exact
which means that all curves are the same.


V

V0
= R

a
−
(

2

V0�dad−1

)
2d−1πE0a

dω̄d−1
1 + 2d−1πE0a

dβ̄d−1(ω̄)

γ∏
k=1

ω̄d
k

×
[

1 +
γ∑

j=1

β̄jd(ω̄)

]
+

γ∑
n=2

ω̄d−1
n p̄n


 . (65)

Equation (65) not only reduces the enormous number of terms that need to be calculated
as well as reducing computational time for example, it also allows the potential difference
between the hyperspheres to be written in terms of closed form polynomial expressions. For
instance an approximation for the voltage in d = 2 becomes


V

V0
≈ −2


 δ

ζ 2
+

1

ζ 2

13∑
j=8

ω̄1−2j


 , (66)
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Figure 8. The potential difference is plotted between the two inclusions for d = 3. Equations (74)
(dashed curve) and (65) (solid curve) show excellent agreement given that (74) is an approximation.
However as the two hyperspheres approach each other we find that (65) has not converged to zero.
This is because the results plotted do not include the charge contributions which would help
convergence to the expected limit more rapidly. Even though the charges have not been included,
we see that the convergence is considerably faster than (40) which includes both images and
charges, and with a substantially less number of terms required, see also figure 6.

where

δ = − 1

2ω̄13
(ω̄14 − 14ω̄12 + 78ω̄10 − 220ω̄8) − 1

2ω̄13
(330ω̄6 − 252ω̄4 + 84ω̄2 − 8), (67)

and

ζ = 1

ω̄6
(ω̄6 − 6ω̄4 + 10ω̄2 − 4). (68)

The fact that the potential difference has been written as a polynomial of the nth degree in (66),
can be attributed to the properties of the ωn. Recall that ωn is written in terms of complicated
continued fractions as n → ∞:

ωn = ω

1 − ωωn−1
, (69)

which can be written down as a polynomial series

ωn =
∞∑

k=0

ωk+1ωk
n−1, (70)

where (70) is a type of recurrence relation. For example, if w1 ≡ w = a/R then we obtain
w2 as the polynomial

ω2 = ω + ω3 + ω5 + ω7 + · · · , (71)

to the desired accuracy after truncating the series. These results allow us to find an
approximation for the d-dimensional voltage in terms of a closed form solution in the next
section.

6.1. An approximation for the d-dimensional potential difference

The analysis that has been presented in previous sections allows the study of the all important
leading terms between the interacting hyperspheres. Using regression techniques we can
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obtain a useful approximation for 
V that can be written down for all dimensions d, as a
function of ω̄ = R/a. Thus, the d-dimensional potential difference between the hyperspheres
is given by the approximation


V

V0
= [ω̄(d−2)(ω̄d − 2d)]

1
2(d−1) . (72)

When we consider the d = 2 case, (72) simplifies to


V

V0
= [(ω̄2 − 4)]

1
2 . (73)

This result is exact in two dimensions to that obtained by Djordjević et al [24], who obtained
their version by the use of hyperbolic series. In three dimensions the voltage reduces to


V

V0
= [ω̄(ω̄3 − 8)]

1
4 . (74)

Equation (72) can serve as a useful beginning to further investigate the behaviour of the voltage
between two hyperspheres with a possible view to resumming otherwise complex terms.

7. Discussion

We have obtained solutions to second order for hyperspherical inclusions using the method
of images. The results agree in the various limits with those obtained by others, e.g., for
d = 2 with Djordjević et al [24] and for the case d = 3 with Jeffrey [16]. Furthermore, our
results using d-dimensional dipole moments means that the convergence is much faster than
the multipole expansion method [22]. An interesting extension to the work so far is to try and
reproduce these results using a bi-spherical coordinate system in d dimensions, a task that is
unfortunately not so easy, given that the solution to d = 3 is extremely complicated on its own
anyway. In this paper amongst other things, the interaction terms have been resumed so that
one-body EMT can be improved and to gain an insight as to how we can extend these results
to a many-body EMT. At the same time our study of hyperspheres is important in the areas of
topology and geometry [30]5. Studies of the surface area and volume have been made with
regards to d-dimensional spheres. The results of this paper are useful to such studies since we
can write the surface area of a hypersphere as

Sd = ad−1Ad, (75)

and its volume as

Vd =
∫

ad−1Ad da, (76)

where Ad is the surface area of a sphere of radius one and a is the general radius. From here
we can study the packing densities of hyperspheres which are paramount in the design of new
materials. We are interested in such things as the number of hyperspheres that can ‘touch’
each other in a stable configuration—this is the so-called kissing number. The other important
aspect that our results allow us to examine is the virial expansion for the dielectric function:

ε = ε0(1 + [ε]c + κc2 + O(c3)). (77)

The question we ask is whether (77) does in fact converge to the required results or diverges
or if in fact there is any convergence at all. We know that for d = 1 and d = ∞ the results
presented in this paper make EMT exact and by generalizing to d-dimensions we check for

5 One must be cautious with regards to the definitions between topology and geometry. These two areas discuss the
same problem but the notation is different causing much confusion.
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divergence issues6. The case d = 1 and d = ∞ can be thought of as bounds where the true
convergence happens to be inside these limits. This is analogous to the variational bounds
approach as applied to a composite medium which states that no matter how good any theory
is for obtaining the dielectric function, it will always lie between these bounds given as

ε1 +
ε1η1

ε1
(ε2−ε1)

+ η1

d

< εeff < ε2 +
ε2η1

ε2
(ε1−ε2)

+ η2

d

, (78)

and are the so-called Hashin–Shtrikman bounds [31] when we substitute d = 3 in (78),
where εi is the dielectric constant for inclusion i and volume fraction ηi . This means
that these are the best bounds we are able to obtain. Divergence problems are tackled in
statistical mechanics by varying d because these occur due to large fluctuations close to certain
dimensions. Furthermore, in some cases, these can have experimental relevance since for
systems of infinite degrees of freedom, when these are integrated out, they can sometimes
take the form of higher dimensional fluctuations. The classic example is fractals where
the proper description of a line for instance is in fact through fractional dimensions. To
clarify this a bit more, consider the situation of spheres immersed in a liquid say, then by
integrating out the hydrodynamic degrees of freedom, you may have spheres that behave like
hyperspheres to a first approximation. This is because the interactions of the fluid and the
spheres can be mimicked by interactions in hyperspace. We imagine a d = 1 space with a
fluid between particles. The effect of the fluid particles can induce interactions that look like
higher dimensional interactions. No one has yet however classified all such cases and it is
a very interesting area of research. It is hoped that this paper will shed some light in that
direction too.

8. Conclusion

We have generalized the interactions between two hyperspheres in a medium in terms of a
d-dimensional framework to any order n that has allowed us to obtain the dielectric function
for the system. Furthermore, the property of continued fractions has meant that we can resum
the otherwise enormous number of complex terms appearing in the interactions, so that only
a few orders are necessary in order to obtain the required convergence for the d-dimensional
potential difference. Calculations in all limits compare very well with the results of others.
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Appendix. The theory of continued fractions

In this section we discuss some of the properties of continued fractions that were used in
this paper. We will only cover the basics as a more detailed treatment can be found in any
mathematics text, see for example [32]. Suppose we want to evaluate the continued fraction of
a number to order n. For integers b0, b1, b2, . . . , bn we assume that bk > 0 for k > 0. These

6 Note that as d → ∞, the charge and dipole contributions tend to zero, since the ratio ω = a/R which appears in
them contains powers of d and a < R.
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integers can be written down as ratios represented by the notation {b0, b1, b2, . . . , bn} where
b0 is the initial term and is taken to be zero in this paper:

{b0, b1, b2, . . . , bn} = b0 +
1

b1 +
1

b2 + · · · +
1

bn

. (A.1)

As an example, consider n = 3; b0 = 2; b1 = 3; b2 = 1; b2 = 4 so that from (A.1) we obtain

{2, 3, 1, 4} = 2 + 1/[3 + 1/(1 + 1/4)] = 43
19 . (A.2)

For a continued fraction x of order n, we can find an approximating fraction for x of order
k < n such that the continued fraction terminates at the kth denominator. It is obvious that
the continued fraction of order k can be written as an ordinary fraction. We therefore have

{b0, b1} = b0 + 1/b1 = (b0b1 + 1)/b1 = A1

B1
(A.3)

{b0, b1, b2} = b0 + 1/(b1 + 1/b2) = (b2(b0b1 + 1) + b0)/(b1b2 + 1) = A2

B2
(A.4)

{b0, b1, b2, b3} = b0 + 1/[b1 + 1/(b2 + 1/b3)]

= (b3[b2(b0b1 + 1) + b0] + b0b1 + 1)/(b3(b1b2 + 1) + b1)

= A3

B3
, (A.5)

and so on where Ai and Bi are integers. If we consider the continued fraction, say,
{2, 3, 1, 4, 2, 1, 2}, then we can represent the second approximating fraction as {2, 3, 1} =
2 + 1/(3 + 1) = 9/4 = A2/B2. More precisely, by the use of (A.3)–(A.5) we find that
A1/B1 = 7/3, A2/B2 = 9/4, A3/B3 = 43/19, A4/B4 = 95/42, . . . . By mathematical
induction, recursion formulae can be established as follows,

Ak = bkAk−1 + Ak−2; Bk = bkBk−1 + Bk−2 (A.6)

where A0 = b0, A−1 = 1, A−2 = 0, B0 = 1, B−1 = 0 and B−2 = 1. In the end when we
compare the final fraction with the various approximating fractions we see a direct correlation
in that the limit of these approximating fractions progressively tends closer and closer to the
final fraction with ever increasing accuracy.
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